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Since Moritz Cantor, typical general histories of mathematics have contained an initial
presentation of “Babylonian mathematics”. As a rule, the tenor of these presentations
have agreed with the overall view of the authors of what constitutes mathematics, and
what constitutes history of mathematics. Accordingly, Morris Kline [1], strongly engaged
in ancient Greek and post-Renaissance rigorously demonstrative mathematics, dismissed
anything pre-Greek as not really mathematics; Dirk Struik [2], highly aware of the
connectionm between mathematics and its technological context, was much more
balanced (and even started with a chapter on what would nowadays be labelled
“ethnomathematics” and what he designated “stone age mathematics”; still, as concerns
the mathematical substance of the Babylonian tradition Struik had only skimmed the
1941 edition of Neugebauer’s Exact Sciences in Antiquity, and his general historical
framework dissolved any specificity of the Babylonian world in a postulated “continuity
and affinity of the Oriental civilizations”, regarding the distinction between “Egyptian,
Babylonian, Chinese, Indian, and Arabian cultures” as “mechanical divisions” (p. xii).

The majestic source collections of Neugebauer [3], Thureau-Dangin [4] and
Neugebauer & Sachs [5] certainly give a much more differentiated picture of Babylonian
mathematics.1 However, none of them try to present a history (neither “internal” not
in broader context) – as Neugebauer says explicitly [3: 79], “development of the
consequences that can be drawn from the text material is not among the aims I have
set myself”. In recent decades, much work has also been published about the
mathematics of single periods or about specific aspects of Mesopotamian mathematics
(now transcending the period where the concept “Babylonian” is adequate). All in all,
the only genuine history of Babylonian/Mesopotamian mathematics was published
by Kurt Vogel in 1959 [7] and aimed at the gymnasium level.2 Given both this target
group (with all respect for the German höhere Schule and for Vogel’s historical insight)
and the immense progress in Assyriological knowledge and understanding attained
since then, this book is obviously outdated by now.

This situation has now been happily changed by Eleanor Robson. Her book, though
claiming to be a “social history”, is indeed more than that – rather a basic history of

1 I allow myself not to include in this list E. M. Bruins’ and M. Rutten’s publication of the
important mathematical texts from Susa [6], since the picture this publication offers is often
terribly distorted by Bruins’ editorial commentary.

2 A. A. Vajman’s book from 1961 [8] is probably also to be understood as history; however, in
the moment of writing I do not have it at hand for inspection under this perspective; in any
case, my once poor Russian has probably deteriorated to the point where I should not make
any judgment.
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mathematics as embedded in its social context and function. Without using space on
discussions of the most sophisticated topics, she gives the reader a good account of
almost everything mathematical going on in the region between the outgoing fourth
and the late first millennium (BCE, as all unqualified dates in what follow) in as far
as it is documented in surviving sources – the most obvious exception being the
techniques of mathematical astronomy, examination of which might indeed be an
overwhelming task.

In her delimitation of “mathematics”, Robson comes closer to Dirk Struik than to
Morris Kline; often, she broadens the subject to “numeracy” and presents, for instance,
the contents of private household computations. This notwithstanding, a large part
of her evidence consists of those texts which are conventionally considered as
“mathematical”: those connected to the school training of scribes.

Robson also deviates from the standard conceptualization of the region she looks
at: neither “Babylonia” – which is only meaningful from the moment Babylon becomes
an important polity in the early second millennium and would in any case exclude
the Assyrian north – nor “Mesopotamia”, a word borrowed from classical Greek (with
a cognate in Biblical Hebrew) and unconnected to the geographical realities of our own
days. Instead, her title speaks of Iraq, which emphasizes that this present-day country
corresponds grossly to an area which was as much of a cultural unity some 4000 years
ago as was “Italy” around 1100 CE. I suspect (and sympathize with) an implicit
argument against those who claim Iraq to be merely an artificial, post-WWI-creation
which is better cut into three statelets whose oil resources it would be easier to grab.

The large majority of known properly mathematical texts are from the Old
Babylonian period (2000–1600, according to the “middle chronology”) – mainly its
second half. Until the 1970s, the only other known mathematical texts were from the
Seleucid era (third and second centuries), apart from a few tables of reciprocals
tentatively ascribed to the Ur III period (21st century). As a rule, these texts had been
bought by museums on the antiquity market, and neither place of origin nor precise
date were known – which obviously contributed to making any writing of history
impossible (just imagine how it would be to write the history of early Modern
mathematics from nothing but a pêle-mêle of undated and unlocated mathematical
manuscripts ranging from Cardano to Abel, and from school to academy level!). Since
then, a small number of mathematical texts from the late fourth, the third and the mid-
first millennium have been discovered; some terminological grouping of the Old
Babylonian corpus has been achieved; and Eleanor Robson herself has found firm
evidence that the tables of reciprocals in question are indeed of Ur III date. Still, most
presentations of “Babylonian/Mesopotamian mathematics” concentrate on the periods
from which most texts are known – these, at least, allow us to make a portrait of the
mathematical culture of specific moments or periods (actually, only of the Old
Babylonian period).

Robson has chosen a radically different way, forcing the presentation into a different
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scheme allotting more or less equal space to each approximate half-millennium.
Occasionally, this compels her to treat under a half-millennium where other material
is scarce a topic which might just as well or more naturally have been dealt with
elsewhere (e.g., “tabular accounting”, reaching from the third into the first millennium,
dealt with in the context of the later second millennium). On the whole, however, the
system works astonishingly well; this is evidently only possible because Robson is not
a historian of mathematics who has specialized in cuneiform mathematics but a fully
trained all-round Assyriologist (first trained as a mathematician, however).

Robson offers a picture where numeracy (and, when this word is adequate,
mathematics) is always bound up with the scribal function (the treatment of symmetry
and general visual culture as aspects of geometry being partial exceptions).3 Until the
mid-second millennium this compound is further linked to state administration and
to the idea of mathematically determined social justice guaranteed by the king – even
much later, the iconography of rulers exhibits the measuring rod and rope as royal
insignia, but for how long their role in the division of land was really remembered
is doubtful (not to speak of “just” distribution).4

From the Old Babylonian period through the earlier first millennium, documents
also reflect the application of scribal mathematics in private merchant households.
However, in the final phase, first in the Assyrian north, everyday administration, statal
as well as private, was increasingly performed on ephemeral supports (wax tablets,
papyrus, parchment), and probably in Aramaic; when its outcome needed duration,
however, for instance in contracts, it might be transferred (without the calculations5)
to clay and written in either Akkadian cuneiform or in alphabetic Aramaic; in the south,
Robson can still point to a mid-first–millennium cuneiform curriculum encompassing
metrological lists and tables of square numbers (and hardly much more mathematics)
as well as tablets reflecting household numeracy (money, interest, metrology, land
measurement). As the two (Assyrian and Babylonian) dialects of the Akkadian language
died as vernaculars after the mid-first millennium, cuneiform culture was upheld only

3 The use of numeration as a literary device in epics and royal inscriptions hardly counts as an
exception to the rule, both literary genres being products of scribal culture.

4 Venerated symbols, as we know, often survive their original meaning – how many Christians
remember today that “God’s lamb” does not stand for the tenderness of the Saviour but for the
butchered sacrificial animal whose blood buys off the wrath of the heavenly Father?

Contrary to Robson, I doubt that Old Babylonian scribal calculators saw work on adwanced
“algebraic” problems dealing with areas as connected to their administration of royal “justice”.
No second-mellinnium source I know of (and none cited by Robson) contains any hint of such
a view.

5 This was no new trend. Intermediate calculations are almost exclusively known from the school
genre – “good scribes never showed their working”, as Robson observes (p. 78) in the context
of the 21st century, where wax tablets are first spoken of.
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by a narrow environment of scholar-scribes, identifying themselves as exorcists, copyists
of omen series, incantation- and lamentation-priests, and the like. As Robson shows,
they belonged to a small, interconnected circle of (real, namely blood-, not
apprenticeship-cum-adoption–based) families. This environment also created the
mathematical astronomy; finally, it produced the small number of surviving Seleucid
non-astronomical mathematical texts.

An appendix of 46 pages lists all published mathematical texts.

Robson’s work is amply richer in details than can be rendered in a review – and history
can only be written on the basis of documented details, hopefully to be fitted together
into a meaningful pattern of general conclusions. Nothing comparable has been made
before, and for the present reviewer it has been a great pleasure to read the book, from
which I have learned much. But although clay tablets survive the millennia better than
most other media, readers should remain aware that only a small part of the evidence
we would like to have has survived; that much less has been excavated – and that many
of the tablets that have been excavated are still waiting to be read. As Assyriologists
sometimes say, the best place to dig is in the Museum cellars. Any pattern that can
be constructed on the basis of the evidence we do possess is therefore a reconstruction,
an extrapolation building in part on what its author sees as reasonable assumptions.
It is therefore no wonder that some of Robson’s general conclusions can be disputed,
just as she herself objects to some of the conclusions drawn by previous workers –
including some of those of the present reviewer.

Detailed discussions of such doubts belong in the context of Assyriological or
historical journals if not in private letter exchange – just explaining to a non-specialist
audience what they are about would require pages and pages of background
information. I shall therefore only air such doubts as are of general character, even here
without going into details with my arguments.

Robson concentrates on what can be documented in the cuneiform record itself.
Although she does recognize the existence of non-literate or at least not cuneiform-
literate numerate activities in the area, she tends to not take them into account in her
historiography, implicitly supposing that the development of the literate mathematical
tradition took place inside a closed scribal environment. This is of course no different
from the way the history of other mathematical periods is mostly written; but the
approach might be unduly restrictive here no less than elsewhere.

Moreover, when discussing possible links to other cultures (in particular Greek
mathematics, Robson does not consider the indubitable links to Islamic practical
geometry nor those to Jaina geometry6) she restricts herself, on one hand, to sweeping

6 There is only a general exhortation (p. 288) to “explore [the place of cuneiform mathematics]
within the sciences in the Middle East, and Asia more generally”. This almost sounds as Struik’s
“affinity of the Oriental Civilizations”.
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arguments (of a kind which might prove that Descartes did not ultimately draw on
medieval abbacus algebra, and which in any case collapse in front of the indubitable
connection between Seleucid and Egyptian Demotic mathematics); on the other, to rather
unspecific references to renowned publications that take pertinence of these for granted,
in a way which unwittingly supports the myth of the Greek genius that invented
everything on its own without interaction with other cultures.7.
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7 I would like to add a personal historical note for the record. On p. 7, Robson suggests that “it
is perhaps no coincidence that ‘Algebra and naïve geometry´, Jens Høyrup’s seminal work on
the language of Old Babylonian algebra” was published in 1990, the year where Neugebauer
and Bruins died. Coincidence in fact it is. The manuscript was submitted in 1986 to one of the
pertinent editors of Archive for the History of Exact Sciences (not van der Waerden, which I regret);
after a full year this editor refused it, accompanying the refusal with a question showing he had
not read until line 7 of the first page. The manuscript was then invited in 1988 by Altorientalische
Forschungen, but typographical composition was difficult and took a long time. Preliminary
presentations of my results had already appeared in Erdem (1986) and Mathematische
Semesterberichte (1989). I had also sent a first extensive but very preliminary university print to
Neugebauer in 1984 and received a kind but non-committal postcard together with some offprints
on the calendar topic on which he was working at that moment. I am happy to be able to say
that I did not celebrate the departure of a giant by kicking his teeth while standing on his
shoulders (that is certainly not what Robson wants to insinuate, I should say). Nor had I been
so scared by Bruins that I dared not criticize him while he was alive and spitting flames.
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